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In this paper, the concept of weakly semi-compatibility and weak compatibility in Menger space has been applied 

to prove a commonly fixed point theorem for six self-maps. An example has also given to support the result. 
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INTRODUCTION 

There have been a number of generalizations of metric space. One such generalization is Menger space initiated 

by Menger [4]. It is a probabilistic generalization in which we assign to any two points x and y, a distribution function Fx,y. 

Schweizer and Sklar [8] studied this concept and gave some fundamental results on this space. Sehgal and Bharucha-Reid 

[9] obtained a generalization of Banach Contraction Principle on a complete Menger space which is a milestone in 

developing fixed-point theory in Menger space. 

Recently, Jungck and Rhoades [3] termed a pair of self-maps to be coincidentally commuting or equivalently 

weakly compatible if they commute at their coincidence points. Sessa [10] initiated the tradition of improving 

commutativity in fixed-point theorems by introducing the notion of weak commuting maps in metric spaces. Jungck [2] 

soon enlarged this concept to compatible maps. The notion of compatible mapping in a Menger space has been introduced 

by Mishra [5]. 

Cho, Sharma, and Sahu [1] introduced the concept of semi-compatibility in ad-complete topological space. Popa 

[7] proved interesting fixed point results using implicit real functions and semi-compatibility in d-complete topological 

space. In the sequel, Pathak and Verma [6] proved a commonly fixed point theorem in Menger space using compatibility 

and weak compatibility. 

In this paper, a fixed point theorem for six self-maps has been proved using the concept of weakly semi-

compatible maps and weak compatible maps. 
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Preliminaries 

Definition: A mapping F: R →  R+ is called a distribution if it is non-decreasing left continuous with 

inf { F (t) | t � R } = 0 and sup { F (t) | t � R} = 1. 

We shall denote by L the set of all distribution functions while H will always denote the specific distribution 

function defined by  

0, t 0
H(t)

1, t 0

≤
=  >

. 

Definition: A triangular norm * (shortly t-norm) is a binary operation on the unit interval [0, 1] such that for all a, 

b, c, d �� [0, 1] the following conditions are satisfied: 

(a) a * 1 = a; 

((b) a * b = b * a; 

((c) a * b � c * d whenever a � c and b � d; 

(d) (d) a * (b * c) = (a * b) * c. 

Examples of t-norms are a * b = max {a + b - 1, 0} and a * b = min {a, b}. 

Definition: [8] A probabilistic metric space (PM-space) is an ordered pair (X, F) consisting of a non empty set X 

and a function F: X × X ��L, where L is the collection of all distribution functions and the value of F at (u, v) ��X × X 

is represented by Fu,v. The function Fu,v assumed to satisfy the following conditions: 

(PM-1) Fu,v(x) = 1, for all x > 0, if and only if u = v; 

(PM-2)  Fu,v (0) = 0; 

(PM-3) Fu,v = Fv,u; 

(PM-4)  If Fu,v (x) = 1 and Fv,w (y) = 1 then Fu,w (x + y) = 1, 

for all u,v,w  X and x, y > 0. 

Definition: [8] A Menger space is a triplet (X, F, t) where (X, F) is a PM-space and * is a t-norm such that the 

inequality 

(PM-5)  Fu,w (x + y)  Fu, v (x) * Fv, w(y), for all u, v, w X, x, y   0. 

Proposition: [9] Let (X, d) be a metric space. Then the metric d induces a distribution function F defined by Fx,y 

{t} = H(t - d(x,y)) for all x, y  X and t > 0. If t-norm * is a * b = min {a, b} for all a, b  [0, 1] then (X, F, *) is a 

Menger space. Further, (X, F, *) is a complete Menger space if (X, d) is complete. 
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Definition:  [5] Let (X, F, *) be a Menger space and * be a continuous t-norm. 

• A sequence {xn} in X is said to be converge to a point x in S (written xn � x) iff for every � > 0 and � � (0,1), 

there exists an integer n0=n0 (�, �) such that Fxn, x (�) > 1 - � for all n � n0. 

• A sequence {xn} in X is said to be Cauchy if for every � >0 and � � (0,1), there exists an integer n0 = n0(�, �) 

such that Fxn, xn+p (�) >1 - � for all n � n0 and p > 0. 

• A Menger space in which every Cauchy sequence is convergent is said to be complete. 

Remark: If * is a continuous t-norm, it follows from (PM-4) that the limit of a sequence in Menger space is 

uniquely determined. 

Definition: [11] Self-mappings A and S of a Menger space (X, F, t) are said to be weak compatible if they 

commute at their coincidence points i.e. Ax = Sx for x � X implies ASx = SAx. 

Definition: [5] Self mappings A and S of a Menger space (X, F, t) are said to be compatible if FASxn, SAxn
 (x) � 1 

for all x > 0, whenever {xn} is a sequence in X such that Axn, Sxn � u for some u in X, as n ���. 

Definition:  Self mappings A and S of a Menger space (X, F, t) are said to be weakly semi-compatible if FASxn, Su 

(x) � 1 or FSAxn, Au (x) � 1 for all x > 0, whenever {xn} is a sequence in X such that Axn, Sxn � u, for some u in X, as n 

���. 

Now, we give an example of a pair of self-maps (S, T) which is weakly semi-compatible but not compatible. 

Further, we observe here that the pair (T, S) is not weakly semi-compatible though (S, T) is weakly semi-compatible. 

Example: Let (X, d) be a metric space where X = [0, 1] and (X, F, t) be the induced Menger space with Fp,q(�) = 

H(� - d(p, q)), � p, q � X and � � > 0. Define self maps S and T as follows: 

DSMT4 

1
x if 0 x

2Sx
1

1 if x 1
2

 ≤ <= 
 ≤ ≤


 And  

DSMT4 

1
1 x if 0 x

2Tx
1

1 if x 1
2

 − ≤ <= 
 ≤ ≤


  

Take xn = 
DSMT4 

1 1

2 n
− . Now, 

FSxn,1/2 (�) = H(� - (1/n)). 

Therefore, 
DSMT4 n

lim
→∞

 FSxn,1/2 (�) = H(�) = 1. 

Hence, Sxn � 1/2 as n ��� 
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Similarly, Txn � 1/2 as n ��� 

Also 

FSTxn,TSxn
(�) = 

DSMT4 

1 1
H

2 n

  ε − −  
  

 � 1,  ��� > 0. 

Hence, the pair (S, T) is not compatible.  

Again, 
DSMT4 n

lim
→∞

 FSTxn,Tx(�) = 
DSMT4 n

lim
→∞

 FSTxn,1(�) = H(� - |1-1|) = 1 � � > 0. 

Thus, (S, T) is weakly semi-compatible. 

Now,  
DSMT4 n

lim
→∞

 FTSxn,Sx(e) � 1, � � > 0. 

Thus, (T, S) is not weakly semi-compatible 

Remark: In view of the above example, it follows that the concept of weakly semi-compatibility is more general 

than that of compatibility.  

Lemma: [11] Let {xn} be a sequence in a Menger space (X, F, *) with continuous t-norm * and t * t � t. If there 

exists a constant k � (0, 1) such that  

 Fxn, xn+1
(kt) � Fxn-1, xn

 (t) 

for all t > 0 and n = 1, 2, 3,..., then {xn} is a Cauchy sequence in X.  

Main Result 

Theorem: Let A, B, S, T, L and M be self maps of a complete Menger space (X, F, *) with t* t � t satisfying : 

L(X) � ST(X), M(X) � AB(X); 

AB = BA, ST = TS, LB = BL, MT = TM; 

either L or AB is continuous;  

(L, AB) is weakly semi-compatible and (M, ST) is weak compatible; There exists a constant k � (0, 1) such that 

F2
Lx,My(kt)*[F ABx,Lx(kt).FSTy,My(kt)] � [pFABx, Lx(t) + qFABx, STy(t)].FABx, My(2kt) 

for all x, y � X and t > 0 where 0 < p, q < 1 such that p + q = 1. 

Then A, B, S, T, L, and M have a unique common fixed point in X. 

Proof: Suppose x0 � X. From condition (3.1.1) � x1, x2 � X such that  
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Lx0 = STx1 and  Mx1 = ABx2.  

Inductively, we can construct sequences {xn} and {yn} in X such that 

y2n = Lx2n = STx2n+1  and   y2n+1 = Mx2n+1 = ABx2n+2 for n = 0, 1, 2, 

Step 1: Taking x = x2n and y = x2n+1 in (3.1.5), we have  

F2
Lx2n,Mx2n+1

(kt)*[F ABx2n,Lx2n
 (kt).FSTx2n+1, Mx2n+1

(kt)]  

� [pFABx2n, Lx2n
(t) + qFABx2n, STx2n+1

(t)].FABx2n, Mx2n+1
(2kt) 

F2
y2n, y2n+1

 (kt)*[Fy2n-1,y2n
(kt).Fy2n, y2n+1

(kt)]  

� [pFy2n, y2n-1
(t) + qFy2n-1, y2n

(t)].Fy2n, y2n+1
(2kt) 

Fy2n, y2n+1
(kt)[Fy2n-1,y2n

(kt) * Fy2n, y2n+1
(kt)]  

� (p + q)Fy2n, y2n-1
(t).Fy2n-1, y2n+1

(2kt) 

Fy2n,y2n+1
(kt)Fy2n-1, y2n+1

(2kt) � Fy
2n-1, y2n

(t)Fy
2n-1, y2n+1

(2kt). 

Hence, we have 

Fy2n, y2n+1
(kt) � Fy2n-1, y2n

(t). 

Similarly, we also have 

Fy2n+1, y2n+2
(kt) � Fy2n, y2n+1

 (t). 

In general, for all n even or odd, we have 

Fyn, yn+1
(kt) � Fyn-1, yn

 (t) 

for k � (0, 1) and all t > 0. Thus, by lemma 2.1, {yn} is a Cauchy sequence in X. Since (X, F, *) is complete, it 

converges to a point z in X. Also its subsequences converge as follows : 

{Lx 2n} � z, {ABx2n} � z, {Mx2n+1} � z and {STx2n+1} � z.     (3.1.6) 

Case I: Suppose AB is Continuous 

 As AB is continuous and (L, AB) is weakly semi-compatible, we get  

LABx2n+2 � Lz and LABx2n+2 � ABz.   (3.1.7) 

 Since the limit in Menger space is unique, we get 
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Lz = ABz.       (3.1.8) 

Step 2: By taking x = ABx2n and y = x2n+1 in (3.1.5), we have 

F2
LABx2n,Mx2n+1

(kt)*[F ABABx2n,LABx2n
 (kt).FSTx2n+1, Mx2n+1

(kt)] 

�� [pFABABx2n, LABx2n
 (t) + qFABABx2n, STx2n+1

(t)].FABABx2n, Mx2n+1
(2kt). 

Taking limit n ���  

F2
z,ABz(kt)*[F ABz,ABz(kt).Fz, z(kt)] � [pFABz, ABz(t) + qFz, ABz(t)].Fz, ABz(2kt) 

� [p + qFz, ABz(t)]Fz, ABz(kt)] 

Fz, ABz(kt) � p + qFz, ABz(t) 

� p + qFz, ABz(kt) 

Fz, ABz(kt) � 

DSMT4 

p

1 q−
 = 1 

for k � (0, 1) and all t > 0. Thus, we have 

z = ABz. 

Step 3: By taking x = z and y = x2n+1 in (3.1.5), we have 

F2
Lz,Mx2n+1

(kt)*[F ABz,Lz(kt).FSTx2n+1, Mx2n+1
(kt)]  

� [pFABz, Lz(t) + qFABz, STx2n+1
(t)].FABz, Mx2n+1

(2kt) 

Taking limit n ��� 

F2
z, Lz(kt)*[F z,Lz(kt).Fz, z(kt)] � [pFz, Lz(t) + qFz, z(t)].Fz, z(2kt) 

F2
z, Lz(kt)*Fz,Lz(kt) � pFz, Lz(t) + q. 

Noting that F2z, Lz(kt) � 1 and using (c) in Definition 2.2, we have 

Fz, Lz(kt) � pFz, Lz(t) + q 

� pFz, Lz(kt) + q  

Fz, Lz(kt) � 

DSMT4 

q

1 p−
 = 1 

for k � (0, 1) and all t > 0. Thus, we have z = Lz = ABz.  
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Step 4: By taking x = Bz and y = x2n+1 in (3.1.5), we have 

F2
LBz,Mx2n+1

(kt)*[F ABBz,LBz(kt).FSTx2n+1, Mx2n+1
(kt)]  

� [pFABBz, LBz(t) + qFABBz, STx2n+1
(t)].FABBz, Mx2n+1

(2kt). 

Since AB = BA and BL = LB, we have 

L(Bz) = B(Lz) = Bz  and  

AB(Bz) = B(ABz) = Bz. 

Taking limit n ���, we have 

F2
z,Bz(kt)*[FBz,Bz(kt).Fz, z(kt)] � [pFBz, Bz(t) + qFz, Bz(t)].Fz, Bz(2kt) 

F2
z,Bz(kt) � [p + qFz, Bz(t)]Fz, Bz(2kt) 

� [p + qFz, Bz(t)]Fz, Bz(kt) 

Fz,Bz(kt) � p + qFz, Bz(t) 

� p + qFz, Bz(kt) 

Fz,Bz(kt) ��

DSMT4 

p

1 q−
 = 1 

for k � (0, 1) and all t > 0. 

Thus, we have 

 z = Bz. 

Since z = ABz, we also have 

z = Az. 

Therefore, z = Az = Bz = Lz.  

Step 5: Since L(X) ���ST(X) there exists v � X such that 

z = Lz = STv. 

By taking x = x2n and y = v in (3.1.5), we get 

F2
Lx2n,Mv(kt)*[F ABx2n,Lx2n

 (kt).FSTv, Mv(kt)]  
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� [pFABx2n, Lx2n
 (t) + qFABx2n, STv(t)].FABx2n, Mv(2kt). 

Taking limit as n ���, we have  

F2
z,Mv(kt)*[F z,z(kt).Fz, Mv(kt)] � [pFz, z(t) + qFz, z(t)].Fz, Mv(2kt) 

F2
z,Mv(kt)*Fz,Mv(kt) � (p + q)Fz, Mv(2kt). 

Noting that F2z, Mv(kt) � 1 and using (c) in Definition 2.2, we have 

Fz, Mv(kt) � Fz, Mv(2kt) 

� Fz, Mv(t). 

Thus, we have  

z = Mv  and so z = Mv = STv.  

Since (M, ST) is weakly compatible, we have  

STMv = MSTv.  

Thus, STz = Mz.  

Step 6: By taking x = x2n, y = z in (3.1.5) and using Step 5, we have 

F2
Lx2n,Mz(kt)*[F ABx2n,Lx2n

 (kt).FSTz, Mz(kt)]  

� [pFABx2n, Lx2n
 (t) + qFABx2n, STz(t)].FABx2n, Mz(2kt) 

which implies that, as n ���  

F2
z,Mz(kt)*[F z,z(kt).FMz, Mz(kt)] � [pFz, z(t) + qFz, Mz(t)].Fz, Mz(2kt)  

F2
z,Mz(kt) � [p + qFz, Mz(t)]Fz, Mz(2kt) 

� [p + qFz, Mz(t)]Fz, Mz(kt) 

Fz,Mz(kt) � p + qFz, Mz(t) 

� p + qFz, Mz(kt) 

Fz,Mz(kt) ��

DSMT4 

p

1 q−
 = 1. 

Thus, we have z = Mz and therefore z = Az = Bz = Lz = Mz = STz 

Step 7: By taking x = x2n, y = Tz in (3.1.5), we have 
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F2
Lx2n,MTz(kt)*[F ABx2n,Lx2n

 (kt).FSTTz, MTz(kt)]  

� [pFABx2n, Lx2n
 (t) + qFABx2n, STTz(t)].FABx2n, MTz(2kt). 

Since MT = TM and ST = TS, we have 

MTz = TMz = Tz and ST(Tz) = T(STz) = Tz.  

Letting n ���, we have  

F2
z, Tz(kt)*[F z, z(kt).FTz, Tz(kt)] � [pFz, z(t) + qFz, Tz(t)].Fz, Tz(2kt) 

Fz,Tz(kt) � p + qFz, Tz(t) 

� p + qFz, Tz(kt) 

Fz,Tz(kt) ��

DSMT4 

p

1 q−
 = 1. 

Thus, we have z = Tz. Since Tz = STz, we also have z = Sz. 

Therefore, z = Az = Bz = Lz = Mz = Sz = Tz, that is, z is the common fixed point of the six maps. 

Case II: L is Continuous 

Since L is continuous, LLx2n � Lz and L(AB)x2n � Lz. 

Since (L, AB) is weakly semi-compatible, L(AB)x2n � ABz. 

Step 8: By taking x = Lx2n, y = x2n+1 in (b), we have 

F2
LLx2n,Mx2n+1

(kt)*[F ABLx2n,LLx2n
 (kt).FSTx2n+1, Mx2n+1

(kt)]  

� [pFABLx2n, LLx2n
(t) + qFABLx2n, STx2n+1

(t)].FABLx2n, Mx2n+1
 (2kt) 

Letting n ���, we have  

F2
z, Lz(kt)*[F Lz, Lz(kt).Fz, z(kt)] � [pFLz, Lz(t) + qFz, Lz(t)].Fz, Lz(2kt) 

F2
z, Lz(kt) � [p + qFz, Lz(t)]Fz, Lz(2kt) 

� [p + qFz, Lz(t)]Fz, Lz(kt), 

Fz, Lz(kt) � p + qFz, Lz(t) 

� p + qFz, Lz(kt), 
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Fz, Lz(kt) � 

DSMT4 

p

1 q−
 = 1. 

Thus, we have z = Lz and using Steps 5-7, we have 

z = Lz = Mz = Sz = Tz. 

Step 9: Since M(X) � AB(X), there exists v � X such that  

z = Mz = ABv. 

By taking x = v, y = x2n+1 in (3.1.5), we have 

F2
Lv,Mx2n+1

(kt)*[F ABv,Lv(kt).FSTx2n+1, Mx2n+1
(kt)]  

� [pFABv, Lv(t) + qFABv, STx2n+1
(t)].FABv, Mx2n+11

(2kt). 

Taking limit as n ���, we have 

F2
z,Lv(kt)*[F z,Lv(kt).Fz, z(kt)] � [pFz, Lv(t) + qFz, z(t)].Fz, z(2kt) 

 F2
z,Lv(kt)*Fz,Lv(kt) � pFz, Lv(t) + q  

� pFz, Lv(kt) + q. 

Noting that F2z, Lv(kt) � 1 and using (c) in Definition 2.2, we have 

Fz,Mv(kt) � pFz, Lv(kt) + q, 

Fz,Mv(kt) �  

DSMT4 

q

1 p−
 = 1. 

Thus, we have z = Lv = ABv. 

Since (L, AB) is weakly semi-compatible, we have 

Lz = ABz  and using Step 4, we also have z = Bz.  

Therefore, z = Az = Bz = Sz = Tz = Lz = Mz, that is, z is the common fixed point of the six maps in this case also. 

Step 10: For uniqueness, let w (w � z) be another common fixed point of A, B, S, T, L and M.  

Taking x = z, y = w in (3.1.5), we have 

F2
Lz,Mw(kt)*[F ABz,Lz(kt).FSTw, Mw(kt)] � [pFABz, Lz(t) + qFABz, STw(t)].FABz, Mw(2kt) 

which implies that  
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F2
z,w(kt) � [p + qFz, w(t)]Fz, w(2kt) 

� [p + qFz, w(t)]Fz, w(kt), 

Fz,w(kt) � p + qFz, w(t) 

� p + qFz, w(kt) 

Fz,w(kt) � 

DSMT4 

p

1 q−
 = 1. 

Thus, we have z = w. 

This completes the proof of the theorem. 

If we take B = T = IX (the identity map on X) in theorem 3.1, we have the following: 

Corollary:  Let A, S, L and M be self maps of a complete Menger space (X, F, *) with t * t � t satisfying : 

• L(X) � S(X), M(X) � A(X); 

• Either L or A is continuous;  

• (L, A) is weakly semi-compatible and (M, S) is weak compatible; 

• there exists a constant k � (0, 1) such that 

F2
Lx,My(kt)*[F Ax,Lx(kt).FSy, My(kt)] � [pFAx, Lx(t) + qFAx, Sy(t)].FAx, My(2kt) for all x, y � X and t > 0 where 0 < p, q < 

1 such that p + q = 1. 

 Then A, S, L, and M have a unique common fixed point in X. 
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